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function is discussed. Examples are considered. 0 2003 Elsevier Ltd. All rights reserved. 

As is well known, under certain conditions of non-degeneracy a Legendre transformation with respect 
to the velocities of the Lagrange function enables one to change from Lagrange’s equations to Hamilton’s 
equations, while a Lagrange transformation with respect to the momenta of the Hamilton function 
enables the inverse change to be made, and thereby enables a one-to-one correspondence to be esta- 
blished between the Lagrange and Hamilton descriptions of the dynamics. It turns out that a Legendre 
transformation of the Hamilton function with respect to the coordinates, which is possible when the 
non-degeneracy conditions are satisfied, is also interesting. This paper is devoted to a discussion both 
of the structure of the equations obtained and of the possibility of using them to investigate the dynamics 
of mechanical systems. 

1. THE CONVENTIONAL RELATION BETWEEN THE HAMILTON AND 
LAGRANGE DESCRIPTIONS OF MOTION 

Consider the Hamilton system 

Q = aHlap, p = -aHlag, PJJE R”; H = H(p,q,t) (1.1) 

In mechanics the Hamilton function H is usually quadratic in the momentum p, and the corresponding 
quadratic form is usually positive definite. This enables us to carry out a Legendre transformation with 
respect to the momenta 

V = aHlap (1.2) 

and obtain the inverse mapping 
P = P(VY % t) (1.3) 

as the solution of Eq. (1.2) for p and construct the corresponding function 

Uv,q,O = p. v-WP, q, t) (1.4) 

in which, instead of the quantity p, we have substituted its value (1.3). This function is the Lagrange 
function for Lagrange’s equation 

dar, ar, -- = - 
dtav aq (1.5) 

They must be supplemented by the first, “kinematic”, subsystem of Eqs (l.l), which, in the new notation, 
has the form 

cj=v (1.6) 
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The correctness of the change from the Lagrange to the Hamilton formalism is ensured by.the 
possibility of obtaining, at least locally, one and only one solution of Eqs (1.2), and also the identity 

auv, q, mq = -JH(P(V, q, t), q, waq (1.7) 

2. THE LEGENDRE TRANSFORMATION OF THE HAMILTON 
FUNCTION WITH RESPECT TO THE COORDINATES 

AND ITS CONSEQUENCES 

The variable p and q in the Hamilton function look like quantities of the same order of importance. 
The question arises as to what happens to the Hamilton equations if the Legendre transformation is 
carried out not with respect to the variables p but with respect to the variables q. We will carry out this 
transformation. We have the variables 

e = dHlaq (2.1) 

and the conjugate variables q in the sense of the Legendre transformation. We will assume that the 
solution of Eqs (2.1), considered as a system in q, has the form 

q = q(p, e, r) (2.2) 

We construct the function 

Np,e, t) = e . q - H(P, q, t) (2.3) 

in which the quantity q is replaced by its value (2.2). 
Differentiation of the function (2.3) with respect to p and e gives 

aA/ap = -aHlap, ame 

Then the Hamilton system (1.1) can be rewritten in the form 

d&I aA se=-- 
dt& ap 

This system must be supplemented by the “kinematic” system 

=q 

(2.4 

3. AN ALTERNATIVE POSSIBILITY OF TRANSFORMING 
A H.AMILTON SYSTEM 

Equations (2.4) and (2.5) differ in their form from the “classical” Lagrange equations (1.5) and (1.6) 
solely in the signs of the right-hand sides. It turns out that one can represent these equations in a form 
which is identical with the form of Lagrange’s equations. To do this we consider the function 

HYP, 9, t) = -H(P, q, r) (3.1) 

Hamilton’s equations can then be written in the form 

q = -amap, fi = amaq 

Suppose 

v = affiaq 

(3.2) 

(3.3) 

and this relation, considered as a system of equation in q, allows of the unique solution 

9 = MP9 v, I) (3.4) 
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We will construct the function 

%P,V,O = q.V-H’(p,q,O 

Then the following relations hold 

a2eelav = q, azelap = -amap 
by means of which Eqs (3.2) can be written as 

dd% ix% 
dtav ap @ = --=-9 V 

or, in the more usual form, as 

4. THE CONNECTION WITH HAMILTON’S 
VARIATIONAL PRINCIPLE 

It is easy to follow the connection between Eqs (3.7) and Hamilton’s variational principle in the Poincare 
form. The functional of action can be transformed as follows: 

b b 

S = j[p. Q- MP, q, t)ldt = 1~. 4: - 1h. li + WP, q, t)ldt = 
cl (I 

b (4.1) 
= [p.qlf:-1[q.P-IF(p,q,t)ldt = [p.qlf:+S 

a 

We will vary the functional s’ in the class of curves with ends fixed with respect to the variables p 
and free with respect to the variables q. By equating the first variation of this functional to zero we 
obtain exactly Eqs (3.2) and, as a consequence, Eqs (3.7). These discussions are exactly analogous to 
those when analysing the “classical” Hamilton variational principle in the Poincare form. 

For mechanical systems the Hamilton function is linear-quadratic in the momenta, and its quadratic 
component is always positive definite and hence non-degenerate. This always enables us to obtain the 
inverse transformation, which is also, perhaps, the main advantage of the Legendre transformation with 
respect to the momenta of the Hamilton function. In the case when the Hamilton function is explicitly 
independent of time, this feature enables one to obtain the Jacobi variational principle in explicit form, 
which is particularly convenient for a geometrical analysis of the trajectories of mechanical systems in 
configuration space. 

At the same time, a Legendre transformation of the Hamilton function with respect to the coordinates 
often turns out to be either impossible, in view of the degeneracy, or presents difficulties due to analytical 
complexities. In such cases we can speak of a transformation with respect to parts of the coordinates, 
obtaining an analogue of Routh’s equations. However, in the case when the Hamilton function is linear- 
quadratic with respect to the coordinates and the matrix of quadratic form is non-degenerate, it is possible 
to construct an analogue of Jacobi’s principle in momentum space. 

5. HAMILTON FUNCTIONS THAT ARE LINEAR-QUADRATIC WITH 
RESPECT TO THE COORDINATES 

An analogue of Jacobi’s variational principle. Suppose the Hamilton function is linear-quadratic with 
respect to the coordinates 

H= ;Aq.q+B.q+C, A = AT (5.1) 
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where the components of the matrix A and of the vector B, and also the quantity C are continuous 
functions of the momenta. Suppose 

v = amaq = -(Aq+B), IT = -H (5.2) 

Then, if the determinant of the matrix A is non-zero, we have 

q = -A-‘(V + B) (5.3) 

Using this relation we obtain the Lagrange function in the form 

~(V,p)=(q.V-K)=-A-1(V+B).V+~(V+B).A-’(V+B)-B.A-1(V+B)+C= 

= -+dv.v-%v+‘&, & = A-‘, $$ = A-$$, ‘& = C-;&B 

Recalling that V = p, we can represent the energy integral (the Painleve-Jacobi integral) in the form 

3 a3 = n.V-z = +jj.fi-~ z-h (5.4 

which exists by virtue of the fact that the function 2 is explicitly independent of time. We have from 
relation (5.4) 

dt* = 
Adp . dp 
2(h-%) (5.5) 

Then, in the class of curves in momentum space, emerging from the point pa, which arrive at the point 
pb and which satisfy relation (5.4), the functional S’, by virtue of (5.5), allows of the following repre- 
sentation (compare with [l-3]) 

b 

S = - I %dt = -h(b-a)+S 
n 

baze s’ = -Iv. pdt = &iQj+98’) .I)dt = j(2(h-%)&pdp)1n+% .dp 

a a PO 

m 

If the initial quadratic form, specified by the matrix A, is positive definite, then the quadratic form 
specified by the matrix d is also positive definite, and the “Jacobi metric in momentum space”, defined 
by relation (5.6), has the same properties as the usual Jacobi metric in configuration space (see, for 
example, [4, Chapter 61 and also [5, Chapter 31). However, in general, such positive definiteness does 
not occur. 

For the positive definite matrix & the region of possible motion is defined in the usual way: this is 
the set of points p E II, such that 

I-I,, = {p: OSh-%(= ;sJ,~)} 

For a negative definite matrix ti the area of the possible motion is defined as 

When the quadratic form defined by the matrix & is sign indefinite, it is difficult to define the region 
of possible motion correctly. Nevertheless, if 

s&i.@ = A+-A- = a&+a,p;+... 2 2 
+ak&-ak+1Pk+l-ak+2Pk+2= - and 

a,>O,i= 1,2, . . . 
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the generalised region of possible motion is given by the inequalities 

-A-lh-%<A+ 

An investigation of the properties of the generalized region of possible motion defined in this way 
is outside the scope of the present paper. 

6. EXAMPLES 

The motion of a particle in a field with a quadratic potential. The dynamics of a particle in a field with 
a quadratic potential can be described by the classical Lagrange equations with Lagrangian 

L = i(v’-~&.q); SQ = diag(Q,,Q,, . . . . a,), Ri = +of 

These equations have the form 

ii=-~qu +=--dq 

{ q=v 

Hamilton’s equations with the Hamilton function 

H = ;(p2+.dq.q) (6.1) 

have the form 

Q = p, p = -dq 

By virtue of a Legendre transformation of the function (6.1) with respect to the variable q 

e = awaq = dqu q = d-L (6.2) 

the function A can be written in the form 

A = &d-le. e-p2) (6.3) 
L 

Here Eqs (2.4) and (2.5) can be represented as 

SK’6 = p, g = -e 

or 

-.&‘p = p (6.4) 

The last equation can also be obtained by a Legendre transformation of the function H’ = -H, which 
has the form 

v = amaq = -dq, wq = -SK’V(V=@) (6.5) 

by virtue of which 

L!? = [V . q-zf],,,,, = -p. s&-‘0 + ;1p’ + &$-‘p. p] = ;[p2- s&-‘p . p] (6.6) 

The Lagrange equations with the Lagrange function (6.6) are identical with Eqs (6.4). 

A relativistic particle in a field with a quadratic potential. The dynamics of a relativistic particle in a 
three-dimensional Euclidean space under the action of a linear potential force can be described by 
Lagrange’s equations 
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daL aL dtav aq 4 = vi Q,VE R3 --=-. 

with the Lagrange function (see, for example, [2, Chapter 31) 

-%v s = itA% ~1. A = diag(A,, A,,A,) (6.7) 

These equations have the form 
d mv 

Z( 1 _ v2c-2)1n 
= -Aq, Q = v 

The dynamics of this system can be described by Hamilton’s equations 

Q = amap, * = -akuaq, H = c(m2c2 + p2)ln + c& 

These equations have the form 

4 = ” 2 1/2, @ = -Aq 
(m2c2+p ) 

We carry out a Lagendre transformation of the function H’ = -II with respect to the variable q. We 
have 

v = awaq = -Aq 
i.e. 

9 = -A-‘V 

Then, bearing in mind that V = p, we can represent the Lagrange function in the form 

2 = v-q-IF = -iA-‘fl. fi + c(m2c2 + p2)ln 

Here Eqs (3.7) can be written as 

-A+ = c p 2 ,n 
(m2c2 + p ) 

Unlike the classical multidimensional oscillator, the integrability, as well as the non-integrability, of a 
relativistic top is not obvious, if all the values ofAi are different. 

The classical Jacobi metric in configuration space for this problem is determined as follows. Since 
the Lagrange function (6.7) is explicitly independent of time, we have the energy integral (the Painleve- 
Jacobi integral) 

~,=$$.fj-Lz m< 2 +(e=h 
(l-v lc ) 

by virtue of which 

dt2 = (c2[ I- (&)])-iq’ 

Then the shortened action can be represented in the form 

baL 
b Pb 

S; = j-:. ajdt = j 
aq 

;;22 ,ndt = jdsq 
a .(1-q/c) 9. 
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where dsi is the Jacobi matrix in configuration space, given by 

&2 = w)2-(mCI)2d92 
9 

c2 
(6.8) 

At the same time, the Jacobi metric in momentum space has the form 

ds; = 2( h - c( rn2c2 + p2)A-‘dp . dp) 

A particle in Humel mechanics. Hamel [7, pp. 316, 3171, when discussing variational methods of 
describing relativistic mechanics, proposed to consider, in addition to mechanical systems described in 
classical mechanics by Lagrange’s equations with Lagrangian L = L(q, a), Lagrangian systems with 
Lagrangian 

x=~zz (6.9) 

where E > 0 is a constant having the dimensions of energy. If E % 2L, Hamel’s function %! can be 
expanded in series in powers of the parameter 2L/E 

x = 3&,+&+2t2+... = & l-L-z+... 
E 2E2 I 

The first term of the expansion is a constant. The second term, apart from the factor, which plays no 
role for the equations of motion, is identical with the Lagrangian of the initial problem of classical 
mechanics. The difference from the equations of classical mechanics, and, under certain conditions, 
from the post-classical approximation of relativistic mechanics also, begins to manifest itself due to the 
terms x2. Some general properties of Hamel mechanics were investigated in [8]. 

Within the framework of Hamel mechanics we will consider the motion of a particle in a field with 
a quadratic potential. The equations of motion have the form 

(6.10) 

where, if 

L = ;(v’-Aq.q) 

They can be represented in the form of a system of Hamilton equations with Hamilton function [8] 

H = -G( 1 + p2fR, G = (E+ Aq. q)‘n 

The Lagrange transformation of the function H’ = -H with respect to the coordinates has the form 

V = Aq( 1 + p’)“IG (6.11) 

Then 

A-% = q( 1 + p2)?G (6.12) 

Multiplying the left- and right-hand sides of Eqs (6.11) and (6.12) scalarly, we arrive at a relation from 
which it follows that 

Aq.q = 
EA-‘V . V 

E+Aq.q = Et1 +p2) 
1 +p2-A-%3” 1 +p2-A-‘VV 

This enables us to write the Lagrange function in the form 
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3 = -( 1 + pZ)*E/G = -Ein( 1 + p2 -A-$. p)lQ 

For this problem the Jacobi metric in configuration space and the Jacobi metric in momentum space 
can be obtained in the same ways as was done when finding the Jacobi metric in configuration space 
for a relativistic particle. 

The motion of aparticle in a central forcefield. Consider the motion of a system described by Hamilton’s 
equations with the Hamilton function 

H = $2 + c(x . xy* 
If the constant c is equal to the product of the Newtonian constant and the mass of the attracting 

centre and a = 1, we have the classical Kepler problem. The Legendre transformation with respect to 
the coordinates of the function H’ = -H has the form 

whence 

v = amax = -cax(x. X)a12-1 

v. v = c*f-&x. @a-l, x.x = [c-*&7. vpa-l) 

These relations enable us to obtain the Lagrange function 

3 = CWa- ljcl _ a)aalW- lltp . Ij)a/Wa- 1)) + $2 

However, for this problem the advantages of describing the motion within the framework of the 
formalism described above are not so obvious. 

Remark. Variables of the type 

V = -aHlJq = aH/aq 

which arise in the problem for systems with an elastic potential are similar to stresses. The description of the dynamics 
of systems “in stresses” is well known in continuum mechanics. 
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